Показательное распределение - Definition. Was ist Показательное распределение
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Показательное распределение - definition

Показательное распределение; Показательная случайная величина; Экспоненциальная случайная величина
  • Cumulative distribution function

Показательное распределение         

распределение вероятностей на действительной прямой с плотностью вероятностей (См. Плотность вероятности) р (х), равной при х ≥ 0 показательной функции λe-λx, λ > 0 [отсюда название П. р.] и при х < 0 - нулю. Вероятность того, что случайная величина X, имеющая П. р., примет значения, превосходящие некоторое произвольное число х, будет при этом равна e-λx. Математическое ожидание и Дисперсия случайной величины X равны соответственно 1/λ и 1/λ2. П. р. является единственным непрерывным распределением вероятностей, обладающим тем свойством, что для любых значений x1 и x2 выполняется равенство

P (X > x1 +x2) = P (X > x1) P (X > x2)

(т. н. свойство "отсутствия последействия"). Указанным характеристическим свойством в значительной мере объясняется, например, та роль, которую П. р. играет в задачах массового обслуживания теории (См. Массового обслуживания теория), где предположение о П. р. времени обслуживания является естественным. П. р. тесно связано с понятием пуассоновского процесса (См. Пуассоновский процесс); промежутки между последовательными событиями в таком процессе суть независимые случайные величины, имеющие П. р.; при этом λ равно среднему числу событий в единицу времени.

Лит.: Феллер В., Введение в теорию вероятностей и ее приложения, пер. с англ., 2 изд., т. 1-2, М., 1967.

А. В. Прохоров.

Экспоненциальное распределение         
Экспоненциа́льное (или показа́тельное) распределе́ние — абсолютно непрерывное распределение, моделирующее время между двумя последовательными свершениями одного и того же события.
НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ         
  • Функция распределения нормального распределения
ПРЕДЕЛ РАСПРЕДЕЛЕНИЯ СУММИРУЕМЫХ СЛУЧАЙНЫХ ВЕЛИЧИН
Распределение Гаусса; Гауссово распределение; Стандартное нормальное распределение; Нормальная случайная величина; Гаусса распределение; Гауссовское распределение; Колоколообразное распределение; Гауссов шум; Гауссовый шум
(распределение Гаусса) , распределение вероятностей случайной величины Х, характеризуемой плотностью вероятности где a - математическое ожидание, ?2 - дисперсия случайной величины Х. Возникает нормальное распределение, когда данная случайная величина представляет собой сумму большого числа независимых случайных величин, каждая из которых играет в образовании всей суммы незначительную роль.

Wikipedia

Экспоненциальное распределение

Экспоненциа́льное (или показа́тельное) распределе́ние — абсолютно непрерывное распределение, моделирующее время между двумя последовательными свершениями одного и того же события.

Was ist Показ<font color="red">а</font>тельное распредел<font color="red">е</font>ние - Definition